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New simplified asymptotic equations for the interaction of nearly parallel vortex 
filaments are derived and analysed here. The simplified equations retain the important 
physical effects of linearized local self-induction and nonlinear potential vortex 
interaction among different vortices but neglect other non-local effects of self- 
stretching and mutual induction. These equations are derived systematically in a 
suitable distinguished asymptotic limit from the Navier-Stokes equations. The general 
Hamiltonian formalism and conserved quantities for the simplified equations are 
developed here. Properties of these asymptotic equations for the important special case 
involving nearly parallel pairs of interacting filaments are developed in detail. In 
particular, strong evidence is presented that for any filament pair with a negative 
circulation ratio, there is finite-time collapse in a self-similar fashion independent of the 
perturbation but with a structure depending on the circulation ratio. On the other 
hand, strong evidence is presented that no finite-time collapse is possible for 
perturbations of a filament pair with a positive circulation ratio. The present theory is 
also compared and contrasted with earlier linear and nonlinear stability analyses for 
pairs of filaments. 

1. Introduction 
Nearly parallel interacting vortex filaments with large strength and narrow cross- 

section are prominent fluid mechanical structures in mixing layers (Corcos & Lin 
1984), boundary layers, and trailing wakes (Van Dyke 1982). Contemporary turbulence 
theories for structure in the inertial range (Chorin 1988; Chorin & Aka0 1991) also 
emphasize the dynamics of slender vortex filaments. Thus, it is very interesting to 
develop simplified asymptotic equations for the interaction of nearly parallel vortex 
filaments in high-Reynolds-number flows. 

The main purpose of the work presented here is to derive a new simplified system of 
asymptotic equations for the interaction of an arbitrary number of nearly parallel 
vortex filaments in a suitable distinguished asymptotic limit (see $42 and 3); the 
properties of solutions of these new equations are analysed in detail in $94 and 5 for 
the special case of a pair of interacting nearly parallel vortex filaments. Also, in 96 of 
this paper the new asymptotic equations are compared with linear theories (Crow 
1970); Moore & Saffman 1972; Widnall 1975) as well as a recent nonlinear theory 
(Klein & Majda 1993) for nearly parallel interacting filament pairs; it is established that 
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the equations in the present work are the appropriate dynamical equations describing 
the nonlinear evolution of the long-wave linear vortex pair instabilities found in the 
earlier studies. The work presented here is an outgrowth of the authors' attempt to 
understand a very interesting remark of Zakharov (1988) regarding symmetric 
perturbations of anti-parallel vortex pairs and in $4, we derive a variant of the equation 
of Zakharov as an extreme special case of our general theory. 

The asymptotic equations which we derive and analyse in this paper are the 
following: consider N-vortex filaments which are all nearly parallel to the z-axis with 
their perturbed centrelines described by the pairs of coordinates 

Xj(a7 t )  = (xj(a, t),  y j (a ,  0)  (1 < j  < N ) ,  (1.1) 

where a parameterizes the z-axis and a, t ,  Xj  are suitably scaled variables in an 
appropriate asymptotic development (see $ 2). Then the self-consistent simplified 
asymptotic limiting equations for N-nearly parallel interacting vortex filaments derived 
in 92 have the form 

where J is the skew-symmetric matrix 

J=(" -') 
1 0 .  

The quantity rj in (1.2) is the circulation of the jth vortex and aj is a constant 
determined by the vortex core structure through an asymptotic matching procedure 
(Callegari & Ting 1978; Ting & Klein 1991; Klein & Majda 1991a; Klein & Knio 
1994). 

1.1. Heuristic derivation of the asymptotic equations 
It is interesting to give a heuristic explanation of the equations in (1.2) without any 
asymptotic formalism. If we ignore the first term on the right-hand side of (1.2), the 
equations that result 

are the familiar equations for the interaction of two-dimensional point-vortices where 
every vortex moves in the potential field generated by the other vortices (Lamb 1932); 
here these equations act in a layered fashion for every value of a. In particular, general 
solutions of the equations for point vortex motion in two dimensions (Aref 1983) are 
always special a-independent exact solutions of (1.2). In 93, we generalize the weli- 
known Hamiltonian structure and conserved quantities for (1.4) to the general 
equations in (1.2). 

On the other hand, the simplest asymptotic equation for the motion of a single 
vortex filament is the local self-induction equation derived by Hama and Arms 
(Batchelor 1967) 

a 2  
-= C , , t x - X ,  
ax 
at iw 

where C,, is a constant related to the choice of reference time and t is the unit tangent 
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vector. The local self-induction equation linearized about a filament parallel to the 
z-axis and evaluated for the perturbed filament X j  is given by 

where, for convenience, we have used the choice of the constant C, determined by 
a j r j  for thejth vortex through the matching procedure in 92. Looking back at (1.2), 
we observe that the first term on the right-hand side involves the physical effect of self- 
induction linearized about the straight background filament. In particular, more 
complex effects of self-stretching of vortex filaments (Klein & Majda 1991 a, b) as 
discussed in 96 of this paper are ignored in the asymptotic equations in (1.2). 

To summarize the discussion in the last two paragraphs, we see that the asymptotic 
equations in (1.2) merely involve the sum of two different but important physical effects 
for interacting nearly parallel vortex filaments, the linearized self-induction of each 
individual vortex line and the nonlinear potential vortex interaction of the other 
vortices acting on an individual vortex in a layered fashion. Intuition suggests that 
these two physical effects might dominate for nearby interacting almost parallel vortex 
filaments where the wavelength of the perturbations is much longer than the separation 
distance and this separation distance is much larger than the core thickness. This 
intuition is confirmed by the detailed asymptotic derivation for (1.2) summarized in 92. 
On the other hand, the recent nonlinear theory of Klein & Majda (1993) for anti- 
parallel vortex filaments applies for smaller perturbation amplitudes in a different 
regime where the wavelength is comparable to the separation distance and consequently 
other more complex effects of non-local self-stretching and mutual induction also 
contribute in a non-trivial fashion. A detailed comparison and discussion of these two 
distinct asymptotic regimes is presented in $ 6  of this paper. 

1.2. Interacting pairs of nearly parallel vortex $laments 
The solutions of the equations in (1.2) are studied in 994 and 5 for pairs of interacting 
filaments with a circulation ratio r which can always be normalized to satisfy 
- 1 d r d 1, r =+ 0; we also assume the same vortex core structure so that uj = 1 in 
(1.2) for j = 1,2. The anti-parallel vortex pair has the value r = - 1 and the co- 
rotating vortex pair has the value r = 1. In $4 we develop a linearized stability analysis 
with the result that within the asymptotic equations in (1.2), vortex pairs are linearly 
unstable with a long wavelength band of instability for r with - 1 d r < 0 and vortex 
pairs are linearly (neutrally) stable for r with 0 < r d 1. We also find special exact 
nonlinear solutions for the equations in (1.2) with r = 1 and easily recover essentially 
Zakharov’s equations (Zakharov 1988) for the special case of symmetric perturbations 
and r = - 1. 

We study the nonlinear behaviour of the nearly parallel filament pair within the 
asymptotic approximation in (1.2) through numerical calculations in $5.  We give very 
strong numerical evidence for robust finite-time collapse of a pair of perturbed 
interacting vortex filaments for any negative circulation ratio, r, with - 1 d r < 0; 
furthermore, the finite-time collapse has an asymptotically self-similar form which 
depends on the circulation ratio, r, but is universal and completely independent of the 
nature of the perturbation for a fixed circulation ratio. On the other hand, for any 
positive circulation ratio, r, with 0 < r d 1, we present strong numerical evidence that 
no finite-time collapse is possible for a wide variety of general large-amplitude 
perturbations of the vortex configuration. The notion of finite-time collapse means that 
the two filament curves actually touch in a finite time during the temporal evolution 
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under (1.2). Of course, solutions of the asymptotic equations in (1.2) are no longer 
valid as a physical approximation when the separation distance is comparable to the 
asymptotic core size (see 0 2) ; nevertheless, it is interesting that linearized self-induction 
and the nonlinear potential vortex interaction in (1.2) are the only physical effects 
needed to drive two filaments with negative circulation ratios very close together. At 
distances where the core thickness and separation distance are comparable, many 
recent numerical experiments give strong evidence for substantial core flattening and 
vortex reconnection (Anderson & Greengard 1989; Kerr & Hussain 1989; Meiron et 
al. 1989; Melander & Zabusky 1987; Kida & Takaoka 1991). Clearly the simplified 
asymptotic equations in (1.2) cannot account for any of these effects. 

2. Derivation 
Here we outline the key ideas and calculations that lead to the simplified equations 

for interacting vortex filaments in (1.2). An ensemble of N vortex filaments, as sketched 
in figure 1, interacts via the three-dimensional Biot-Savart integrals for the induced 
velocities on the filament centrelines (see Klein & Knio (1994) for a detailed analysis). 
The integrals decompose into the sum of the Biot-Savart integrals over the vorticities 
of each individual vortex, so that the induced motion of one given filament consists of 
self- and foreign-induced velocity contributions. The self-induction of slender 
perturbed vortices in the regime considered in this paper has been studied in detail by 
Klein & Majda (1991 a) and we will use their results here without repeating the 
derivation. Thus, in the present section and in the Appendix we concentrate on the 
velocity contributions due to the presence of the neighbouring filaments. A leading- 
order asymptotic derivation of the equations in (1.2), which is self-contained except for 
a few references to specialized differential geometric relations, is provided in the 
present section. Since non-local induction effects turned out to be very important in 
other regimes for slender vortex dynamics (Klein & Majda 1991 b, 1993; Klein, Majda 
& McLaughlin 1992), we present in the Appendix a detailed calculation that includes 
higher-order terms and demonstrates that, in the regime considered in this paper, the 
curvature-potential vortex interaction proposed on intuitive grounds in 0 1 in fact arises 
as the leading-order dynamics from a systematic analysis under a suitable distinguished 
limit of perturbation wavelengths, perturbation amplitudes and vortex core sizes. 

We consider N slender, nearly parallel vortex filaments that are characterized 
individually by 

(2.1) 

(i) the circulation strengths, Ti, 
(ii) the small effective core sizes, Si 4 1 

and (iii) the time-dependent centrelines Y;(t). 

Following Klein & Majda (1991 a), length and time are non-dimensionalized using a 
characteristic radius of curvature of the 2’S-curves and a typical circulation strength, 
so that all the ri are of order O(1). The core size parameters St for the individual 
filaments are given by 

where Ci = O( 1) is a quadratically nonlinear functional of the detailed core vorticity 
distribution of the ith filament (see Callegari & Ting 1978; Klein & Majda 1991a; 
Klein & Knio 1995). The centrelines Y;(t): s + T ( s ,  t )  have an asymptotic rep- 
resentation 

I 
Si = Sexp (- Ci) (6 6 l), (2.2) 

q s ,  t )  = st, + 2 p  (!, E L) E4 + O(E2),  
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FIGURE 1. Vortex filaments characterized by circulation, ri, core size 6, core vorticity distribution 
d ( r / S )  and filament centreline q ( t ) .  

where to is a constant unit vector and e is a small parameter, satisfying 

6 4  e2 4 1. (2.4) 

Without loss of generality we require that the xz) are normal to to, i.e. that 

The formula in (2.3) represents small-amplitude, short-wavelength distortions of a 
leading-order straight vortex, while the order estimate in (2.4) accommodates 
displacements of the filaments that are in general large compared to the vortex core 
diameters. We introduce a particular distinguished limit between the core size 
parameter 6 and the displacement parameter ez in (2.12) below. 

It has been shown by Callegari & Ting (1978), Klein & Majda (1991 a) and, using a 
totally different analytical approach, by Klein (1994) and Klein & Knio (1995) that the 

;y(22) - to = 0. 



206 R. Klein, A .  J .  Majda and K.  Damodaran 

geometrical evolution of slender vortices in the regime considered obeys the 
propagation law 

a t  

The first term points in the direction of the local binormal vector bi and, via the 
expression (In( 1 /a) + C,), describes the influence of the vortex core structure on the 
filament motion. The logarithmic term represents the overall effect of the core size, 
whereas the core coefficient Ci depends on the detailed core vorticity distribution as 
mentioned above. The contribution Q{ in (2.5) is the so-called finite part of the 
Bio-Savart integral and it describes the filament motion due to non-local self- 
induction. Finally, Q:uter is a superimposed velocity contribution, which in the present 
analysis corresponds to the induced velocity at the centreline location of the ith 
filament owing to the vorticities of the other filaments with j = 1,. . . , N ,  j + i. 

The local and non-local self-induction for a single filament with geometrical scalings 
as in (2.3) has been analysed in detail by Klein & Majda (1991 a) .  The authors find, in 
particular, that Q:, which generally is a complex non-local and nonlinear functional of 
the filament geometry Yi(t), reduces under the stated assumptions to the linearized, yet 
still non-local, expression 

r. 
Q{s6 = 29[x2)]  x to + o( 1) as 6 --f 0. 

41t 

Here 9 [ .] is the pseudo-differential operator 

fa 1 

9 [ ~ ]  ( C) = - (W(C + h)  - W ( C )  - ~ w ' ( c  + h) + $h2H( 1 - lhl) w"(c)) dh, (2.7) J --oo i i 3  

where primes denote differentiation with respect to CT and H( .) is the Heaviside step. 
The impact of the 9-operator is best understood by considering its Fourier symbol 

~(LJ = e - ' ~ ~ ~ [ e ~ ~ " ]  = - t2(ln 161 - CJ, (2.8) 
where C, = -0.0772.. . is a given fixed constant, (see Klein & Majda 1991 a) .  

Given these results for the self-induction of each filament, we are left with the task 
of analysing the foreign-induced velocity components QYuter. We show in the Appendix 
that this velocity contribution evaluates to the sum of the line-Biot-Savart integrals 
extended over all of the neighbouring filaments, i.e. 

This formula provides an accurate approximation as long as IXi- Xi[ % 6 everywhere, 
i.e. as long as there is no local merging between pairs of filaments. 

Each of the integrals QY{ter under the sum in (2.9) is to be evaluated asymptotically 
using the curve representations in (2.3) for E 6 1. Noticing that the reference point Xi 
on the ith filament is located far outside the core of, say, thejth filament, we may 
immediately use the explicit formulas given, e.g. by Callegari & Ting (1978) or Klein 
& Majda (1991 a)  for the induced velocity from a slender vortex in the immediate 
vicinity, but still outside, of its vortical core: 

( K ~ ) ~ , ~ + ( K C O S Y ) O ) ~ , ~ + Q ~ , ~  
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i i 

FIGURE 2. Associated points on neighbouring filaments and auxiliary quantities for the 
description of vortex-vortex interactions. 

Here r j I i  is the shortest distance between Xi and any point on Y;Pi”(t). Let the associated 
point on 2; closest to Xi be denoted by Xjli. Then ejli is the circumferential unit vector 
in planes normal to 2; in Xjli evaluated at  Xi. Furthermore, ( ~ b ) ~ ~ ~  is the product of 
curvature and binormal of 9; in Xjli while q ~ ~ / ~  is the circumferential angle in the 
normal plane at Xjli, measured with respect to the principal normal njii .  Finally Q$i is 
the finite part of the Biot-Savart-integral for 2;Pi”, evaluated at Xjli. We illustrate the 
definitions of the symbols ( r ,  q ~ ,  8, b)jli in figure 2. Next we obtain the leading-order 
contribution to (2.10) by observing that the distances rj l i ,  following the curve 
representation in (2.3), are 

(see (A 12) in the Appendix), so that the first term in (2.10) is O ( P ) ,  while the other 
terms are O(ln l/e) and O(1) only. Considering on the other hand the equation of 
motion (2.5) for the ith filament, we find that the leading binormal term from the self- 
induction is of order O(ln l/&). Obviously we obtain a highly non-trivial competition 
between local induction effects and the leading ‘potential vortex term’ in (2.10) if we 
introduce the distinguished limit 

r .  31% . = c21$/”i’ -siz)I, (2.11) 

1 
c2 =Kip.  (2.12) 

Under this constraint, we find the following preliminary set of evolution equations for 
the ensemble of filaments: 

(2.13) 

where (2.14) 
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characterizes the influence of the core structure of the ith filament. To obtain a closed 
system from these equations, we have to express the time derivative, the curvature term 
and the circumferential unit vector ejli in terms of the displacement functions x2), T2) : 
Thus we obtain 

(2.15) 

where 7 = t /e4 .  Next, using the relation 

K b  = t X K n  = f X f s ,  (2.16) 

where s” is an arclength coordinate and t , n , b  are the tangent, principal normal, and 
binormal unit vectors, and noticing that the straight-line coordinate s from (2.3) 
satisfies s = $1 + O(e2)) (see Klein & Majda 1991 a), we find 

(see (A 28) in the Appendix), where 

Finally, 

S 
g = -  

E 

(2.17) 

(2.18) 

(2.19) 

(see (A 21), (A 7 ) ,  (A 12) in the Appendix). Collecting (2.13)-(2.19), we arrive at the 
closed system of equations 

(2.20) 

which is equivalent to (1.2), except for a trivial rescaling of time by a factor of 47t and 
the choice to = (O,O, 1). 

In the Appendix, we present an extended derivation of the dynamical equations for 
the evolution of N slender vortices that includes the first order in e2. Recovering (2.20) 
at the leading order, we demonstrate that the influence of non-local self-induction is in 
fact negligible as e + 0 and the mutual induction acts only in a layered fashion in the 
present regime for geometrical perturbations of the vortices. It is nevertheless 
interesting to note the precise functional form of the non-local higher-order 
contributions for future reference, since their effects may become important for the 
longtime dynamics when the initial data do not lead to vortex collisions and 
breakdown of the solutions on the timescales considered here (see $$5.1 and 5.2 for 
solutions of (2.20) that do and do not exhibit local collisions of filaments in finite time, 
respectively). 

3. Hamiltonian structure and conserved quantities 

(1.2) in the form, 
We write the simplified equations for interacting nearly parallel vortex filaments from 
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In order to find the Hamiltonian for the system of equations in (3.1), we need to find 
a functional, A?, of the N-vortex filaments so that 

In (3.2), SA?/8Xj, denotes the functional or variational derivative (Logan 1987) with 
respect to the curvature X,(r) compared through the L2 inner product for curves, 

(@, !P)o = [@(r) Y(a) dcr. (3.3) 

In (3.3) and the remainder of this paper we assume that the filament curves are either 
periodic in cr so that the integration range in (3.3) is over a period interval or that the 
filament curve perturbations vanish sufficiently rapidly together with their derivatives 
so that all the contributions from infinity vanish in the situation that the range of 
integration in (3.3) is the entire line. 

To find the Hamiltonian satisfying (3.2) we write A? in the form 

A? = XS+3rP (3.4) 

where, from (3.1) 

and 

for 1 G j  < N .  The functional, A?s, satisfying (3.5) is given by 

(3.5) 

while the functional, XP, satisfying (3.6) is merely the integral over cr of the familiar 
N-point vortex Hamiltonian (Lamb 1932), i.e. 

= 2 c r k h  lxj(~)-xk(CT)l dg. 
j < k  “ I  

With (3.3)-(3.8), we conclude that the Hamiltonian satisfying (3.2) is given by 

Of course, it follows immediately from the equations in (3.2), that 

the Hamiltonian, A?, is conserved in time for solutions 

of the asymptotic filament equations in (3.1). (3.10) 

3.1. Other conserved quantities 
The equations in (3.1) have other symmetries which lead to integrated analogues for 
solutions of (3.1) of the conservation of the centre of vorticity and angular momentum 
which are probably familiar to the reader for two-dimensional point vortices (Lamb 
1932). 
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The Hamiltonian in (3.9) remains unchanged under the transformations 
Xi++ Xj+Z , ,  where Z,, is an arbitrary 2-vector. Thus, we define the mean centre of 
vorticity by 

M = C rj Xj(u) dn. (3.11) S ”  j=1 

An elementary calculation establishes that dM/dt = 0 for solutions of (3.1) so that 

the mean centre of vorticity, M ,  is 

conserved in time for solutions of (3.1). (3.12) 

Similarly, the Hamiltonian in (3.9) remains invariant under the transformations 
Xi H O(0) Xi where O(6) is an arbitrary rotation matrix. We define the mean angular 
momentum by 

f N  

A = 2 rj Iq(a)12 dn J j=1 

and elementary calculations establish that 

the mean angular momentum, A ,  defined in 
(3.13) is conserved in time for solutions of (3.1). 

(3.13) 

(3.14) 

There is another conserved quantity which arises for solutions of the interacting 
filament equations which is not derived as a direct analogue in integrated form from 
the equations for two-dimensional point vortices. The Hamiltonian in (3.9) remains 
invariant under the translation, Xj(a) H Xj (n  + h) where h is arbitrary so that Noether’s 
theorem guarantees that there is another conserved quantity. By following the 
procedure for Noether’s theorem in the form stated in Arnold (1989), we claim that the 
quantity 

W = C rj(JXj(n)).- dn S ”  j = 1  an (3.15) 

is conserved in time for solutions of the filament equations in (3.1). To verify this, we 
calculate that 

= { 1) + (2). (3.16) 

We claim that all of the integrands in both terms { l} and (2) are perfect derivatives so 
that all contributions on the right-hand side of (3.16) vanish. Since 

the integrand in {I} is a perfect derivative while 
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so that the integrand in (2) is also a perfect derivative. Thus, 

the quantity, W, defined in (3.15) is conserved by 

solutions of the filament equations in (3.1). 

3.2. The average distance functional 
We briefly consider a generalized distance functional, I ,  defined by 

21 1 

(3.17) 

(3.18) 

We show below that I is conserved for special configurations consisting of identical 
vortex filaments. Through integration by parts, we compute in general that 

(3.19) 

where Xj(g, t )  = (xi(g, t), y j (g ,  t)). From the identity in (3.19), we observe that 

the average distance functional, I ,  is conserved in time for 

solutions of (3.1) provided that the product of the circulation, rj, 
and the vortex structure parameter, aj, is invariant 

for all the filaments, i.e. r j a j  = rkak .  (3.20) 

In particular, for co-rotating filament pairs with the same structure in the vortex core, 
the distance functional, I ,  is conserved. 

4. The equations for pairs of interacting filaments 
Here we begin the study of solutions of the simplified equations for interacting 

filaments from (1.2) in the special case involving two interacting nearly parallel vortex 
filaments. For simplicity in exposition, we assume that the vortex core parameters aj 
are identical and without loss of generality (by trivial time rescaling) we assume that 
one of the filaments has circulation, r, = 1, while the other vortex filament has 
circulation r, = r where r satisfies - 1 < r < 1 with r =I= 0; thus, r represents the 
circulation ratio of the two interacting filaments. For the pair of interacting filaments 
with Xj(g,  t )  = (xj,yj), it will be convenient to introduce the complex coordinates for 
each filament 

f o r j =  1,2 with i = (-l)1'2. 

specialized to the case of two interacting filaments have the form 

$j = x j ( g ,  t> + iyi(g, t ) ,  (4.1) 

With the simplification mentioned in the above paragraph, the equations in (1.2) 
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From $3 these equations have the following conserved quantities, 

Furthermore, for corotating pairs so that r= 1, we have the additional conserved 
quantity 

I = - $ , I2  dc. (4.4) s 
To make the nonlinear term in (4.2) a function of only one variable we introduce the 
coordinates $ = $, - $2, and c j  = k1 + $, so that 

The equations in (4.2) have the following form in the new variables, 

4.1. Corotating filament pairs 
For corotating filament pairs with r= 1, the two equations in (4.6) completely 
decouple into two separate scalar equations given by 

The first equation in (4.7) is the linear Schrodinger equation while the second equation 
in (4.7) is a nonlinear Schrodinger equation with an unusual nonlinearity. 

The equations in (4.7) have a dispersive wavelike behaviour. We demonstrate this by 
writing down some elementary exact solutions by following a standard procedure 
(Klein & Majda 1991b). The complex function $ will be a nonlinear plane wave 
solution of the form 

7 (4.8) 

(4-9) 

$ = B ei(ka+wt) 

4 w = --k2 
B2 ' 

provided that 
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With these exact solutions, we obtain general wavelike solutions in the original 
complex filament coordinates given by 

(4.10) 

where $ is an arbitrary solution of the linear Schrodinger equation. The numerical 
experiments reported in $5 confirm the wavelike behaviour of general solutions of the 
corotating filament pair. 

4.2. Zakharov's equation for  counter-rotating symmetric filaments 
For counter-rotating vortex filaments with r = - 1, the filament equations from (4.6) 
are strongly coupled and are given by 

(4.11) 

Symmetric perturbations of the counter-rotating filament pair in the sense of Crow 
(1970) (also see Klein & Majda 1993) produce special nonlinear solutions of the 
filament equations in (4.2) with r = - 1 which satisfy the symmetric conditions 

$z(C, 0 = -$I@, 0, (4.12) 

for all times. With (4.5) and the symmetry conditions in (4.12), we have $ = 2i Im $l 

and $ = Re Thus, with the definition $l(g, t )  = u(c, t )  - iv(v, t),  the two complex- 
valued equations in (4.1 1) reduce, for symmetric perturbations, to the two coupled real 
equations 

Ot = -u,,+-, 
(4.13) 

Ut = v,,. :I 
Without presenting any details, Zakharov (1988) wrote down the equations 

(4.14) 

with the nonlinear coefficient, a(u) = In (u ld ) ,  and proposed the solutions of these 
equations as a model for the collapse of symmetric perturbations of the counter- 
rotating vortex pair. The equation in (4.13) is essentially Zakharov's proposed 
equation in (4.14) except that the peculiar logarithmic dependence of U ( U )  in (4.14) has 
been replaced by a constant. Furthermore, the equation in (4.13) has been derived 
through self-consistent asymptotic principles as presented in $ 2 followed by the 
straightforward calculations from this section which exploit the very special 
circumstances involving symmetric perturbations of the counter-rotating pair. 

4.3. Linearized stability theory for  the filament pair 
Here we investigate the linearized stability of the straight-line two-dimensional point- 
vortex solutions for any arbitrary circulation ratio within the class of all filament 
perturbations which satisfy the simplified asymptotic equations in (4.2). 
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= (id,O) and 
$, = (--id, 0) where d is the separation distance. With the variables $ and $ satisfying 
the transformed filament equations in (4.6), we write down the familiar exact solutions 
(Lamb 1932) that correspond to pairs of straight-line point vortex solutions with the 
explicit formulas for r + - 1, 

We choose the origin of our coordinates so that at time t = 0, 

and for r = - 1, 

(4.15) 

(4.16) 
$ ( O ) ( t )  = (d, 0). .I 

We linearize the equations in (4.6) about these exact solutions c#JO, @O and obtain the 
linearized equations for perturbations, still denoted by $ and $, and given by 

where $o = dexp (2i(l+ r)  t/d2) and a bar indicates complex conjugation. To get rid 
of the time dependence that enters through $:, we go to a coordinate frame that rotates 
with the vortex filaments, through the variables x and 0 defined by 

x(a,t) = $(g,t)exp(-2i(l+T)t/d2),\ 
(4.18) @(a, t )  = $(a, t)exp(-2i(l + r > t / d 2 ) .  j 

With this transformation, the linearized equations of motion and the equations for the 
corresponding complex conjugates are given by 

(4.19) 

1 
= f(1 -r)X,,+$(l  +r) 

1 2(1+ r)  

We solve this 4 x 4 system with the Fourier transform. The coupling of x and-@ to their 
complex conjugates, x and 0, in real space means that i ( E ,  t )  is coupled to i( - [, t )  in 
wavenumber space and the same is true for 0 where 5 is the wavenumber. In 
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wavenumber space the equations in (4.19) reduce to the 4 x 4  matrix-ordinary 
differential equation, 

(4.20) 

(4.21) 

f(9 + 291/2)1/2 and A2, = f i(9 - 291/2)1/2, The matrix A(Q has the eigenvalues A: - = 
where 

a4 a2b252 a2b2$ b4t4 2 2 6 (4.22) 

d8 d6 
9 = 16-+32- +20- d4 + 4- d4 + 8 %+ a2b2t8,j  

with a = 1 +r and b = 1 -r. We have growing solutions and linearized instability 
whenever the A+are imaginary. From the form of the A+ it is easy to see that since both 
9 and 9 are positive real numbers from (4.22), A: is ahays a real number. Thus, only 
A:, which has a minus sign under the radicand, can assume imaginary values and yield 
instability. It is useful to define the growth factor 3, which depends on the signs of the 
radicands in A t ,  - 

9 = sgn (- (9 - 291/2)) l(9 - 2P1/2)1/21. (4.23) 

Whenever the A: are real, B is negative, and the perturbations are neutrally stable 
with the oscillation frequency given by the absolute value of 3. If, however, any one 
of the A: is imaginary, B is positive, and we have either exponentially growing and 
damped solutions, with the growth/damping rate given by the absolute value of 9. In 
general the growing solution dominates and we have an instability. From the definition 
of 9, we have B > 0 and instability if and only if 9’ < 49 .  Therefore we consider the 
quantity, g2- 49,  given explicitly from (4.22) by 

2 2 = 9  - 4 9  = [a2-b2] 

where as before a = 1 + r a n d  b = 1 -I-. 
First, we consider the situation with a positive circulation ratio so that 1 2 r > 0; 

in this case, we have the inequality a > b which guarantees by (4.24) that 9’ - 4 9  is 
positive for all wavenumbers 5 and there are no growing modes. Thus, we have 
linearized (neutral) stability for the vortex pair in this situation. 
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FIGURE 3. The wavelength of the most unstable mode predicted by linearized theory as a function 
of the circulation ratio r with - 1 d r < 0 with separation distance, d = 1 .  

Next, we consider the situation with negative circulation ratios r with 
- 1 < r < 0 which implies that we have a < b. From (4.24) in this case the only 
positive term in 9 = - 4 9  is (b2 - az)  b2$. At long wavelengths, t2 4 1, This positive 
term is dominated in magnitude by the negative contributions to 2? of order t2, t4 and 
t6; thus, there is always long-wavelength instability for the straight-line vortex pair for 
any negative circulation ratio. On the other hand, at short wavelengths, t2 % 1, 
g 2 - 4 9  is dominated by the positive factor [u2-b2I2(* and there is always short- 
wavelength stability. 

We summarize our analysis presented in the previous two paragraphs in the 
following fashion : 

Within the simplified vortex filament equations in (4.2), straight- 

line point-vortex pairs have linearized long-wavelength instability 

for arbitrary negative circulation ratios and linearized (neutral) 

stability for arbitrary positive circulation ratios. (4.25) 

For any fixed negative circulation ratio, the graph of the stability function 3 from 
(4.23) is positive over a finite interval of wavenumbers extending from zero where 3 
vanishes. For each negative circulation ratio there is a unique wavenumber with the 
largest growth rate and we plot the wavelength of this most unstable linearized mode 
versus the negative circulation ratio in figure 3 for a separation distance d = 1. Notice 
that as the circulation r tends to zero, this wavelength decreases to zero. The 
asymptotic derivation presented in $2 is valid for a fixed circulation ratio, I', but is not 
uniformly valid in the limit when T-t 0. The short-wavelength behaviour in figure 3 for 
the predictions from linear theory is one manifestation of this non-uniformity in the 
asymptotics. 

4.4. A numerical method for  interacting filament pairs 
Here we briefly describe an accurate and robust method for the numerical solution of 
the filament pair equations in (4.2). We consider filament pairs that are 2n-periodic in 
v. The overall strategy utilizes the method of splitting and is similar conceptually to the 
numerical procedure from Klein & Majda (1991b). 
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In one of the basic fractional steps, the point-vortex equations, 
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-- - 
i at 

(4.26) 

are solved exactly through a timestep at a discrete number of evenly spaced spatial grid 
points through explicit solution formulae as presented in (4.15) and (4.16). In the other 
fractional step, the linear Schrodinger equations 

(4.27) 

are solved exactly for a timestep via discrete fast Fourier transform and explicit exact 
solution in wavenumber space. These two steps are alternated in time in a standard 
fashion to yield second-order accuracy (Klein & Majda 1991 b). Furthermore, this 
numerical method (4.3) exactly conserves in time the conserved quantities in (4.3) 
involving the mean centre of vorticity, M, the mean angular momentum, A ,  and also 
the distance functional? I for the special case r = 1, since both of the separate 
fractional steps in (4.26) and (4.27) automatically conserve these quantities. 

The Hamiltonian, X ,  from (3.9) is not conserved exactly by the numerical procedure 
and we utilize the conservation of this quantity as an accuracy check on the timestep. 
We control the timestep by requiring conservation of the Hamiltonian to a precision 
of 1 in lo5. for each simulation? when the error in the Hamiltonian (the deviation from 
the initial value) fluctuated by more than lop5, we reduced the timestep by a factor of 
five using a conditional if-then-else loop. The lower limit on the timestep in our 
variable timestep scheme was set at At = 

We validated this numerical procedure by utilizing the exact solutions from $4.1 for 
r= 1 and also by comparison with the detailed predictions of the linearized theory 
from $4.3 at short times. Results based on these second validation tests will be 
presented at the beginning of the next section. All calculations reported in this paper 
used 256 nodes with some additional calculations involving 1024 nodes in spatial 
refinement studies for convergence. The minimal timestep size, At = for 
conservation of the Hamiltonian was never reached for all of the results reported in 35  
until the critical time T* where the filament pair exhibited finite-time collapse. We also 
used the Fourier energy spectrum of the solution as a numerical diagnostic for the 
spatial resolution (Klein & Majda 1991b). Even for the problems with finite-time 
collapse to be discussed in $ 5.1, the energy spectrum for each filament curve remained 
concentrated in the low wavenumbers typically smaller than 20 (Damodaran 1994) so 
that the computed solutions are well resolved with 256 Fourier modes. 

5. Nonlinear behaviour and finite time collapse for interacting filament 
pairs 

equations for interacting pairs of vortex filaments in (4.2). 
Here we present the detailed nonlinear behaviour of solutions of the simplified 
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5.1. Nonlinear finite time collapse for  any negative circulation ratio 
First, we explore the effects of nonlinearity as compared with the detailed predictions 
of linearized stability theory from 94.3 for the two representative negative circulation 
ratios, r = - 1.0, -0.5. To calculate the nonlinear behaviour of solutions of (4.2) we 
use the numerical method described in 54.4 here and elsewhere in this section. Also, we 
normalize the separation distance of the unperturbed filament pair as d = 1 here and 
for any other circulation ratio used in this section. 

We pick initial data which involve small perturbations of the straight-line filament 
pair with wavelength 27t which correspond to the eigenvector of the matrix iA(0 from 
(4.20) associated with the eigenvalue yielding unstable growth for the wavenumber 
6 = 1 according to the linear theory described earlier in 94.3. Thus, for the anti-parallel 
pair with r = - 1, we consider initial data involving special symmetric perturbations 
(see (4.12) and Crow 1970) of the filament pair with the form 

where A is an amplitude parameter measuring the strength of the initial perturbation. 
For the filament pair with r = -0.5, the perturbations which are most unstable at 
wavelength 27t have the form 

= -0.5+A((0.061-0.237i) e-'"+(0.203+0.138i) e'"),), 
$2 = 0.5+A((0.6-0.513i) e-'"+(0.79+O.Olli) e'"). J (5.2) 

Here and elsewhere in this section, we monitor the minimum filament separation 
distance, d,(t), as a function of time where 

d*(O = min 1$11(fl, t> - $z(C, t>l. 
o < o < z a  

Obviously, there is finite-time collapse of the filament pair provided d,(t) tends to zero 
as t approaches some finite time T*. 

With the small-amplitude perturbations for the initial data with A = 0.03 in (5.1) 
and (5.2) for r = - 1, -0.5, respectively, in figure 4 we graph the time history of the 
minimal separation distance for the nonlinear solution of the filament pair equation 
from (4.2) and compare this behaviour with that predicted by the linearized theory 
from 94.3, i.e. using the time-dependent solution of the linear problem in (4.20). As 
expected, the predictions of linear theory and the nonlinear behaviour both agree for 
both circulation ratios for short times when the amplitude of the perturbation remains 
small. This agreement for the early time behaviour also indicates the accuracy of the 
numerical method described in 94.4. However, for both negative circulation ratios, the 
graphs in figure 4 indicate that as time evolves the nonlinear solutions exhibit finite- 
time collapse through substantial nonlinear behaviour. Next we document the 
geometric nature of this nonlinear collapse in detail for the two negative circulation 
ratios with several larger-amplitude initial perturbations of the filament pair. 

Nonlinear collapse for  r = - 1 

We consider initial data for the filament pair with r = - 1 with the form in (5.1) but 
with a large perturbation amplitude adjusted so that the initial minimum separation 
distance was 0.4. The graph of the separation distance as a function of time, not 
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FIGURE 4. The minimum separation distance as a function of time with comparison of . . ., 
nonlinear solution and -, linearized solution (a) for r = - 1.0 and (b)  for r = -0.5. 

displayed here, behaved qualitatively like that in figure 4(a) with a much earlier time for 
filament collapse, t = 0.1146, owing to the larger amplitude of this perturbation along 
the unstable eigenmode. In figures 5-7 we display snapshots of the solution of the 
filament equations in (4.2) with this initial data for times t = 0, 0.0800, 0.1 146 as it 
evolves toward collapse. In these as well as in subsequent figures in this section, we 
display both a three-dimensional perspective of the two filament curves and also 
projections of these filament curves along the three coordinate planes. The initial 
perturbations are symmetric for the anti-parallel pair and, as expected from $4.2, the 
solutions retain this symmetry throughout the nonlinear evolution. The nature of the 
filament collapse presented in these figures is very intuitive when one considers the 
behaviour locally of point vortices in two dimensions with equal and opposite 
circulations summarized in (4.16) above. As figures 5-7 indicate, the points of closest 
separation move more rapidly and pinch off faster than the rest of the vortex filament 
and the magnitude of the pinching necessarily increases dramatically as the interaction 
with the linearized local seif-induction represented in (4.2) brings the filaments 
together. The result of this interaction is finite-time collapse. 
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FIGURE 5. Snapshot of filaments for symmetric perturbation and r = - 1 at time t = 0; 
(6) is the projection of the filaments on the coordinate axes. 

In the next numerical experiment described here, we consider large-amplitude 
antisymmetric helical initial perturbations of the anti-parallel pair (Crow 1970) given 
by 

= -0.5+0.3 e'", 

$2 = 0.5 + 0.3 e'". 
(5.3) 
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FIGURE 6. Snapshot of filaments for symmetric perturbation and r = - 1 at time t = 0.0800. 

Clearly, for such antisymmetric perturbations, the initial separation distance between 
the two filaments is identically constant. Furthermore, as regards the linearized theory 
from 94.3, antisymmetric perturbations for the circulation ratio r = - 1 are neutrally 
stable and do not grow in time. Despite this fact, the nonlinear solution of the filament 
pair equations with this initial data exhibits finite-time collapse at t = 0.7068 and the 
graph of the minimum separation distance, d,(t)  is a monotome decreasing function of 
time which resembles that in figure 4(a) .  Snapshots of the evolving filament curves at 
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FIGURE 7. Snapshot of filaments for symmetric perturbation and r = - 1 at time t = 0.1 146. 

times t = 0, 0.67 and 0.7068 are given in figures 8, 9 and 10, respectively. One striking 
feature of the nonlinear collapse is that the filament curves initially are antisymmetric 
about the line between them as depicted in figure 8, but at the collapse time they are 
almost symmetric about the same line as indicated in figure 10. In fact, it is clear from 
comparing figures 9 and 10 with figures 6 and 7 that locally the nonlinear collapse 
strongly resembles the symmetric collapse discussed in detail previously. These two 
examples give convincing evidence that general perturbations of the anti-parallel pair 
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FIGURE 8. Snapshot of filaments for antisymmetric perturbation and r = - 1 at time t = 0. 
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FIGURE 9. Snapshot of filaments for antisymmetric perturbation and r = - 1 at time t = 0.28. 
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FIGURE 10. Snapshot of filaments for antisymmetric perturbation and r = - 1 at time t = 0.7068. 
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FIGURE 11. Snapshot of filaments for the large-amplitude perturbation from (5.2) 
and r= -0.5 at time t = 0. 

always evolve toward a specific symmetric nonlinear solution describing finite-time 
collapse. Such similarity solutions are discussed at the end of this section. The authors 
(Damodaran 1994) have tested the nonlinear behaviour of solutions of the filament 
equations for T = - 1 with four other distinct types of initial filament configurations 
and all of these cases eventually evolve locally to a universal symmetric nonlinear 
collapse as described in figures 6 and 7; lack of space prevents a detailed description 
of these additional results here. 
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FIGURE 12. Snapshot 
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of filaments for the large-amplitude perturbation from (5 .2)  
and r= -0.5 at time t = 0.1500. 
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Nonlinear collapse for  r = -0.5 
Here we present evidence for universal behaviour in the local nonlinear collapse of 

solutions with r = - 0.5; however, the universal structure for this collapse depends in 
an interesting fashion on r for these negative circulation ratios. First we consider the 
solution of the filament equations in (4.2) for T = -0.5 with initial data with the form 
given in (5.2) with the larger amplitude, A ,  adjusted so that the minimum separation 
distance initially is 0.4. The nonlinear solution exhibits finite-time collapse at 
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FIGURE 13. Snapshot of filaments for the large-amplitude perturbation from (5.2) 
and r= -0.5 at time t = 0.1735. 

t = 0.1735 and the time history of the minimum separation distance, d,(t), has a 
monotone character qualitatively resembling that from figure 4 (b). Snapshots of the 
evolving solution at the times t = 0, 0.1500 and 0.1735 are presented in figures 11, 12 
and 13, respectively. An important qualitative feature is that there is much more local 
rotation without spatial translation in this situation with r = -0.5 as compared to the 
earlier case with r = - 1 where translation dominates; this is easy to understand with 
the rotating motion of point vortices in (4.15) for r =k - 1. As depicted in figures 12 and 
13, this local rotation gives a qualitatively different structure for the local collapse for 
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FIGURE 14. Snapshot of the solution for symmetric perturbations and r = -0.5 at t = 0. 
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r = -0.5 which occurs when the filament with smaller circulation loops around the 
filament with larger circulation and is sucked in by it. This process is shown clearly by 
the coordinate projections in figures 12(b) and 13(b). 

To demonstrate that a similar local structure for the finite-time collapse occurs with 
different initial data, we consider the solution of the filament equations with r = -0.5 
but with symmetric helical initial perturbations of the filament pair with the form 

kl = - 0.5 - 0.3 e-i", 1 
k2 = 0.5 + 0.3 e-'". J (5.4) 

The solution exhibits wave collapse at the time t = 0.2305 and snapshots of the 
filament curves for the times t = 0, 0.2000 and 0.2305 are presented in figures 14, 15 
and 16, respectively. It is clearly evident by comparing figures 15 and 16 with 12 and 
13 that the local nature of the finite-time collapse with this second initial data is 
essentially the same as that presented in the early case. Furthermore, other systematic 
studies (Damodaran 1994) with four different types of initial data yield the same local 
nonlinear structure for collapse with r = -0.5 as presented here. All of these 
calculations support the notion discussed at the end of this section that there is a 
universal self-similar form for the collapse for any negative circulation ratio with a 
structure which varies in an interesting fashion with r. 

5.2. Nonlinear waves without collapse for  positive circulation ratios 
The elementary analysis from $4 suggests very different behaviour of solutions of the 
filament equations in (4.2) for positive circulation ratios, r> 0, in contrast to the 
behaviour just documented in $5.1 for r < 0. In particular the analysis in $5.1 for 
r = 1 yields the complete nonlinear decoupling of symmetric and antisymmetric modes 
in (4.7) with exact wavelike solutions. Furthermore, the linearized stability analysis for 
vortex filament pairs from $4.3 yields a prediction of neutral stability and wavelike 
behaviour for any positive circulation ratio, r, in contrast to the situation with 

The authors have studied the nonlinear evolution of solutions of the filament 
equations with ten different types of initial data for the representative positive 
circulation ratios with r= 1 and r= 0.5. The initial filament geometry, the initial 
minimum separation distance, and the smallest minimum separation distance over the 
time interval t = 0 to t = 2 for each of the ten cases are summarized in table 1. 

As the data in table 1 indicate, no finite-time collapse occurs and for eight of the 
numerical experiments the smallest minimum separation distance over this time 
interval is comparable in magnitude to the initial separation distance. In two special 
cases for r= 1 and r= 0.5, respectively, by utilizing very special initial filament 
structures involving plane curves in orthogonal planes, the authors were able to 
document cases where the smallest minimum separation distance is nearly an order of 
magnitude smaller than the initial minimum separation distance. Furthermore, in all 
ten cases, the solutions of the filament equations exhibited nonlinear wavelike 
behaviour as predicted by the elementary analysis in $94.1 and 4.3. 

We illustrate this typical wavelike behaviour through the snapshots of the solution 
in figure 17 for the case in table 1 with r= 1 and the smallest minimum separation 
distance as time evolves. For this case, the initial data for the two filaments involves 
two plane curves in orthogonal planes with filament functions initially given by 

r<o. 

= -0.5-0.3cosu,'1 

I,+, = 0.3isinu. J (5 .5)  
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FIGURE 15. Snapshot of the solution for symmetric perturbations and r = -0.5 at t = 0.2000. 
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FIGURE 16. Snapshot of the solution for symmetric perturbations and r= -0.5 at t = 0.2305. 
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Circulation 
ratio Initial geometry 

r= 1 Symmetric perturbations, helical 
curves 

Antisymmetric perturbations, 
helical curves 

Antisymmetric perturbations, 
plane curves (same plane) 

Multi-mode data? 
Symmetric perturbations, helical 
curves 

Symmetric perturbations, plane 
curves 

Antisymmetric perturbations, 
helical curves 

Antisymmetric perturbations, 
plane curves (same plane) 

Plane curves in orthogonal 
planes 

Plane curves in orthogonal 
planes 

r = 0.5 

r= 1 

r = 0.5 

Initial minimum Smallest minimum 
distance distance 

0.4 

1 

1 

0.4 
0.4 

0.4 

1 

1 

0.2 

0.2 

0.26 

1 

1 

0.25 
0.27 

0.28 

0.83 

0.87 

0.037 

0.035 

t The multi-mode data considered were = - 0.5 - 0.3 exp (- a) + 0.25 exp (2ia) and $2 = 
0.5 + 0.3 exp (ia) + 0.25 exp (2 i4 ;  in all other cases, the initial data involves only the largest 
wavelength 27~. 

TABLE 1 

In figures 17(a)-17(d) we show the filament curves at the times t = 0, 0.3, 0.908 and 
0.940, respectively. For graphical display these curves have been shifted n-units. The 
initial minimum separation distance is 0.2 and t = 0.908 is the time with the smallest 
minimum separation distance with value 0.037. The wavelike evolution of the solution 
is evident from these figures; furthermore, the solution as presented at the later time 
t = 0.940 in figure 17d) clearly passes through the time, t = 0.908, with smallest 
minimum separation distance in a wavelike fashion without exhibiting any tendency 
toward collapse. 

5.3. Self-similar behaviour for the finite time collapse 
In 9 5.1, we have presented substantial evidence for the universal local self-similar finite- 
time collapse of general solutions of the filament pair equations in (4.2) for any 
negative circulation ratio, r< 0 while the nature of this local collapse exhibits 
interesting dependence on the circulation ratio. In his note, Zakharov (1988) suggested 
the possibility of finding special self-similar collapsing solutions of his proposed 
equations in (4.14) for symmetric perturbations of the anti-parallel pair; furthermore, 
he suggested the similarity law 

(5.6) 1 2.4 = (t-to)%$, 

( t  - to)1’Z ’ 
fl r =  

for special solutions of (4.14). Next, we consider general self-similar solutions of the 
filament pair equations in (4.2) for an arbitrary circulation ratio and recover a 
generalization of the scaling ansatz in (5.6). We remind the reader that the equations 
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FIGURE 17. Snapshots of the solution with initial data for the filaments involving two plane curves 
in orthogonal planes at the times (a) t = 0 ;  (b)  t = 0.300; ( c )  t = 0.908, the time with smallest 
separation distance; ( d )  t = 0.940. 

which we derived through systematic asymptotic principles in general and in particular, 
in (4.13) for symmetric perturbations of the anti-parallel pair, do not have the peculiar 
logarithmic coefficient dependence as proposed by Zakharov (1 988) and summarized 
in (4.14); this will actually simplify the calculations and naturally leads to (5.6) in this 
special case. 

We consider the filament pair equations in the form developed in (4.6), i.e. 

In standard fashion, we seek a symmetry group which leaves the equations in (5.7) 
invariant. We calculate the stretching transformations 

which leave the equations in (5.7) invariant, and elementary computations show that 
this is the case for a = c = d = f. Thus, from general theoretical considerations (Logan 
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1987) we necessarily seek general similarity solutions of the first kind for the equations 
in (5.7) with the form 

(5.9) 

By substituting the ansatz from (5.9) into (5.7) we obtain the coupled pair of second- 
order ordinary differential equations for the two complex-valued functions, fir), g(r), 
given by 

(5.10) 

[ ‘ I;;] l;-Y 
1 
T?jf-f= (1 - r ) g ” + ( l  +r) f”+- 

7ygl-g = (1 +T)g”+(l  -r) f”-- . 

1 

1 
1 

With the formulae in (5.9) and (5.10), which we have developed here, we have both 
recovered and generalized for the filament pair equations in (4.2) Zakharov’s proposed 
similarity law from (5.6) for the equation in (4.14) with peculiar logarithmic factors. 

Obviously, it is an extremely interesting mathematical issue to study the existence 
and structure of the solutions of (5.10) as a function of the circulation ratio, I-. The 
numerical evidence presented earlier in this section leads us to conjecture that such 
similarity solutions with suitable boundary conditions at infinity exist for the negative 
circulation ratios, r < 0. Such solutions probably do not exist for positive circulation 
ratios, r > 0, although it is possible that similarity solutions do exist in this case but 
are dynamically unstable. Use of the conserved quantities from 93 and listed in (4.3) 
combined with suitable boundary conditions at infinity should be useful in reducing the 
degrees of freedom for the two complex ordinary differential equations in (5.10). 

Here, we make a more modest contribution and simply check the validity of the 
proposed self-similar scaling behaviour near the time of collapse for two representative 
numerical solutions computed in $5.1 for the circulation ratios, r = - 1, -0.5. 
According to the scaling laws predicted in (5.9), the minimum separation functional, 
d,(t), should approximately satisfy the scaling relation 

(5.11) 

where T* is the finite collapse time. In figure 18, we give log-log plots of the computed 
minimum separation distance for solutions of (4.2) versus the straight line predicted 
from (5.11). In figure 18 (a)  we use the solution for r = - 1 with the initial data in (5.1) 
and depicted in figures 5-7 while in figure 18(b) we use the solution for r = -0.5 with 
the initial data in (5.4) and depicted in figures 14-16. For the case with r = - 1 in figure 
18 (a), the behaviour in (5.1 1) is confirmed for a wide range of scales extending to several 
decades including surprisingly small distances from the collapse time where the detailed 
numerical resolution is questionable. For the case with r = - 0.5, the fit between the 
computations and the predicted scaling is excellent over a somewhat narrower but still 
significant range and appreciable deviation develops afterwards. This deviation is 
probably due to inadequate numerical resolution of the finer scale temporal 
development of the collapse of the filament pairs which is more complicated for 
r = -0.5 than for r = - 1. Nevertheless, these results support the conjectured self- 
similar scaling behaviour from (5.1 1). 
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FIGURE 18. Log-log plots of minimum separation distance as a function of time compared with the 
theoretical prediction of the self-similar scaling law for (a) r = - 1 and symmetric perturbations and 
(b) r = -0.5 and symmetric helical perturbations. 

6. Comparison of vortex interaction theories 
In this section we compare existing theories for linear and nonlinear interactions of 

nearly parallel vortex filaments with the new theory presented in this paper. We first 
summarize in 96.1 the linear stability theories by Crow (1970) and Jimenez (1975) for 
antiparallel and parallel vortex pairs and compare with the linearized stability theory 
for the present asymptotic regime as presented in 94.3. By analysing the long-wave 
unstable symmetric modes of Crow’s explicitly, we will show that our results are 
consistent with the earlier approaches in that they arise from these through a specific 
long-wave limit. 

As linearly unstable perturbations grow, nonlinear effects become important. In 5 6.2 
we discuss two nonlinear mechanisms of very different nature, namely curvature 
nonlinearities and the potential vortex interaction. Both mechanisms are potentially 
relevant for interactions of nearby slender vortices, but they become active in very 
different regimes for wavelengths and amplitudes of the geometrical vortex filament 
perturbations. In 6 6.3 we will discuss the importance of these nonlinear mechanisms 
for the stability of a vortex pair by contrasting Klein & Majda’s (1993) work on the 
regime with curvature nonlinearity with the present results. 

Before we enter the detailed discussion, we summarize the perturbation scaling 
assumptions that are relevant in the different regimes mentioned above. Common to 
all of the analyses presented by Crow (1970), Jimenez (1975), Klein & Majda (1993) 
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and in this paper, is the assumption that the lengthscales and geometrical perturbation 
amplitudes of the vortex filament displacements are asymptotically large compared to 
the vortex core sizes s’ (primes denote dimensional quantities in this section). In 
contrasting the different scalings, it is useful to introduce the unperturbed vortex 
filament separation distance d‘ as a reference scale for the characteristic perturbation 
amplitude A’ and perturbation wavelength A’ in the different regimes. Then these 
regimes are characterized as follows : 

(i) In the Klein-Majda (1993) theory, one has 

A‘ A’ 
= O(4,  - d’ = O( 1). 

(ii) In the present paper, we consider perturbations with 

A’ 
d’ 

where E is a small parameter related to the core size to separation distance ratio via 

e - 1 / € 2  6’ 
- 4 1  

E d’ 

(see $2, equations (2.3) and (2.12)). 
(iii) The linearized analyses of Crow (1970) and Jimenez (1975) (and the linearized 

Klein-Majda results) are valid in both the regimes for A‘/d‘ from (i) and (ii), provided 
that infinitesimal amplitudes are considered, i.e. the limit A‘ + 0. 

We will support the last statement in $6.1 and discuss the crucially different 
nonlinear effects in the regimes from (i) and (ii) in @6.2 and 6.3. 

6,l.  Linear stability of parallel vortex pairs 
Crow (1970) and Jimenez (1975) studied the linear stability of pairs of counter-rotating 
and corotating nearly parallel slender vortices of equal strength, respectively. Even 
though they used an ad hoc regularization of the singular line-Biot-Savart integrals for 
the two vortices, they were able to identify the key stability features of these vortex 
configurations for infinitesimal disturbances. In particular, linearized non-local 
vortex-vortex interactions and vortex self-interactions through the Biot-Savart 
integrals were properly accounted for and the mutual potential vortex interaction, 
responsible for two-dimensional point-vortex dynamics in the limit of exactly straight 
parallel vortices, appears in a small-displacement linearization. 

The linearized dynamics of a pair of nearly straight vortex filaments with arbitrary 
relative strengths can be cast into the form 

(see Klein & Majda 1993 ; Klein 1994). Here &,(g, 7), &,(g, 7) are complex functions, 
whose real and imaginary parts are the components of the displacement vectors Xi:; 
in and normal to the plane spanned by the unperturbed filaments, respectively. Notice 
that the definition is with respect to the frame of reference defined by the unperturbed 
straight filaments, which rotate around each other at a constant frequency if f =#= - 1. 
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Thus the definition slightly differs from that of lccl, @2 in (4.1). The variable CT = s’/d‘ 
is a dimensionless straight line coordinate on the unperturbed filament axes in 
accordance with the scaling assumptions under (i) above. 

The symbol 9[ .] in (6.1) denotes the self-induction operator from (2.7), d is the non- 
dimensional leading-order unperturbed filament separation and 9“[ . I ,  A!“[. ] are the 
linearized coupling operators 

whose features have been discussed in detail by Klein & Majda (1993). In the equations 
from (6.1) we have correctly accounted for the global rotation of the vortices about 
their centre of vorticity in the planes normal to the unperturbed axes through the terms 
involving (1 + I-). These terms have erroneously been ignored in the earlier publication 
by Klein & Majda (1993). (Notice, however, that all their numerical evaluations of the 
asymptotic equations were for I- = - 1 ,  where there is no rotation, so that the main 
results in that work are not affected.) 

The equations in (6.1) are valid for any value of r = O( 1). Thus, they are equivalent 
to Crow’s (1970) linearized perturbation equations for I- = - 1, and they yield Jimenez’ 
(1975) linearized dynamics for corotating vortices for r = + 1. Jimenez finds neutral 
stability for the corotating pair at all wavelengths in agreement with our results in 94.3. 
Crow’s analysis predicts neutral stability of a counter-rotating pair only for 
perturbation wavelengths comparable to the unperturbed filament separation. He 
shows that antisymmetric modes (see the definition in (4.12)) are neutrally stable for 
all wavelengths, but that two bands of instability for symmetric modes exist. There is 
a long-wave instability at wavelengths of order O(d’/c)  and a short-wave unstable band 
for wavelengths of order O(Sd’/c), with S from (2.12) (see Klein & Majda (1993) for 
a detailed discussion of Crow’s results regarding their €-dependence). 

The first band, O(d’/e), involves perturbation wavelengths large compared to the 
unperturbed filament separation. It is these long-wave instabilities that lead to large- 
amplitude displacements and final merging of trailing vortices behind an aircraft as 
depicted in figure 1 of Crow (1970). The high-wavenumber band is associated with 
deformations on the lengthscale of the vortex core diameter. Since the perturbation 
theories cited rely on the assumption that any geometrical distortion of a vortex must 
have a characteristic length large compared to the vortex core size, this high- 
wavenumber band must be dismissed as spurious. A modified theory that does not use 
the slender vortex approximation and considers distortions of the vortex core structure 
is necessary to consistently describe instabilities in this high-wavenumber range (see 
Widnall (1975) and the references therein). We remark, however, that the nonlinear 
generation of short-wave solution components from long-wave initial data as observed 
by Klein & Majda (1991 a, 1993) in the framework of the slender vortex filament theory 
is not at all a spurious process. 

We recall from (2.3) that the nonlinear theory presented in this paper is valid for 
geometrical perturbations of the vortex filaments with wavelengths large compared 
to the unperturbed separation distance : We consider wavelength of order 
O(eR’) = O(d’/e), while the displacements and the unperturbed separation distance are 
O(e2R’) = O(d’), where R‘ is a typical filament radius of curvature. Considering the 
discussion of Crow’s results for long-wave instabilities, it seems natural to investigate 
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whether the linearized version of our present theory agrees with the long-wave limit 
versions of Crow's (1970) or Klein & Majda's (1993) predictions associated with the 
equations in (6.1). 

We intend to compare the wavenumber dependence of the growth rate in the long- 
wave unstable band for symmetric modes of a counter-rotating pair. Thus we 
consider the stability results from 94, equations (4.22) and (4.23) for 

a = 0, 

b = 2. 
r = - 1 hence 

(6.4) 
64F 

.!2? = 4 p ,  P = -  
d4 ' 

Then we find 

(6.5) 
I 

and A$ = 2 (dLJ'(4 - (dQ2>l''. 

Next we analyse Crow's or Klein & Majda's formulae for wavenumbers of order O(e) 
in their non-dimensional representation. Let k denote the wavenumber variable from 
Klein & Majda (1993)' then the growth function for symmetric modes of the anti- 
parallel pair consistent with (6.1) is given by 

where 

with P = dk, 

I 1 
2s' 

w = -[1 -e2($lnk2-co)], 

I x = P K m  

$ = P2Ko(P) +PKl(P). 

Here KO,& are the modified Bessel functions of zeroth and first-order and co is a 
constant. 

To compare (6.6)-(6.8) with (6.3)-(6.5) we notice that wavelengths that are by a 
factor of 1 /E larger than the unperturbed filament separation distance correspond to 
wavenumbers k = O(s) in the Klein-Majda theory. Thus, we let k = €6 in (6.6)-(6.8) 
and extract the leading-order terms. Noticing that 

/3'w = $(d#', 

P"o(P) = O(47 

/%(PI = 1 + O(sh 

we find the leading-order expression for p" from (6.7) as 

(6.10) 

This coincides with the formula for the growth rates for the unstable eigenvalues from 
the present work as given in (6.5) except for an excess factor of s2 in (6.10). This factor 
is due to the fact that the vortex pair dynamics in the Klein-Majda (1993) regime is by 
one order of magnitude in c' faster than the vortex interactions in the regime 

s2 
Acrow Ik=& = 2 (dG2 (4 - (w>1'2 (1 + O(4).  
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considered here and that the Klein-Majda theory therefore uses a reference time for 
non-dimensionalization that is by a factor of e2 shorter than that used in the present 
analysis. Thus, a trivial time rescaling yields the desired coincidence of the stability 
results and we conclude that : The present theory for  long-wave, large-amplitude 
displacements of nearby slender vortex filaments reproduces the linear stability results of 
Crow (1970) for  a counter-rotating vortex pair with equal strengths in the small- 
wavenumber regime. 

6.2. Types of nonlinearities relevant for vortex pair stability 
Two-dimensional vortex dynamics 

As described in 0 1, the interaction of point vortices in two dimensions relies on the 
fact that each member of a collection of point vortices is advected by the sum of the 
potential vortex velocities induced at its current location by its peers. Therefore, if 
{Xi(t)}El are the centre locations of the vortices, then 

(6.11) 

where to is the unit vector normal to the plane of the vortex motion. As two nearly 
straight parallel slender vortices approach each other, this mutual induction becomes 
prominent, once their separation is sufficiently small. Being basically two-dimensional 
in nature, this potential vortex induction will then interact with the inherently three- 
dimensional effects of mutual and self-induction owing to geometrical distortions of 
the filament centrelines. We have analysed this scenario extensively in the earlier 
sections of this paper. 

The local induction approximation and Hasimoto's transform 
On the other hand, Arms & Hama (1965) consider the self-induced motion of a 

single vortex filament in three space dimensions. Neglecting all non-local effects, they 
formulated the 'local induction approximation', which amounts to the evolution 
equation 

ax - af = K b ,  (6.12) 

for the filament centreline 9(0: s+ X(s, 0. Here t = Tt/4xae2 (see (2.14) for the 
definition of a) is a suitably scaled time variable, K is the local curvature of the filament 
centreline and b the local binormal unit vector. Comparison with (2.5) shows that this 
dynamic equation is a leading-order approximation for the motion of an isolated three- 
dimensional-vortex filament, provided one is willing to neglect terms of order 
e2 = In-l(1/8). Hasimoto (1972) introduced a nonlinear transformation in order to 
simplify the mathematical description of the vortex centreline evolution. He combined 
information on curvature K and torsion T of the filament centreline in the complex 
filament function 

(6.13) 

He was able to identify the three-dimensional-vortex evolution equation (6.12) with the 
cubic nonlinear Schrodinger equation 

Ilr(s, 0 = K(S, 0 exp 1 T(s', 0 ds' . (I 1 

(6.14) 
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for the filament function in (6.13), where Sis an arclength coordinate. This work relates 
in a very clear fashion the local induction dynamics of a vortex with the integrable 
cubic Schrodinger equation and this allows a complete theoretical classification of 
curvature-induced nonlinearities of vortex dynamics (Ablowitz & Segur 198 1). 
Hasimoto, for example, shows that the local induction dynamics allows for the 
formation of solitons on the vortex filament centreline. 

This curvature nonlinearity also plays a major role in the self-induction of a single 
perturbed slender vortex. Klein & Majda (1991 a, b) observe that the local induction 
approximation of Arms & Hama (1965) and Hasimoto (1972) cannot describe the 
important mechanism of vortex self-stretching through non-local self-induction (the 
local induction binormal term does not describe any vortex stretching at all!). 
Evaluating the general vortex evolution equation from (2.5) for perturbed vortex 
filaments in the regime from (2.3) and using the Hasimoto transform (6.13), they derive 
the relevant equation for the time evolution of small-amplitude-short-wavelength 
perturbations of a nearly straight slender vortex : 

(6.15) 

Here cr and 7 are stretched arclength and time variables as in (2.3) and the $[.I- 
operator is the one given in (2.7) and (2.8) above. In this regime, the curvature 
nonlinearity is diminished to first order in e', where it has to compete with the 
linearized non-local contribution from the finite part of the Biot-Savart integral. For 
a detailed discussion of mathematical features of (6.15) and of the structure of 
solutions see Klein & Majda (1991 b). 

It turns out that the two very different nonlinear mechanisms from (6.11) and (6.15) 
both play a role in the evolution of interacting slender vortices, but that they each 
become dominant in different regimes from the perturbation scalings. 

6.3. Nonlinear stability theories for a vortex pair 
An interaction of non-local induction effects and the cubic curvature nonlinearity was 
observed by Klein & Majda (1993) in a nonlinear stability analysis of (anti-) parallel 
pairs of vortex filaments in the regime of perturbation scales stated in (i) at the 
beginning of this section. This work is a systematic generalization of Crow's linearized 
(1970) theory in that it (a) is based on systematic matched asymptotic expansions for 
the Navier-Stokes equations and (b) allows for perturbation amplitudes that are 
sufficiently larger to make the Hasimoto-type curvature nonlinearities as important as 
the non-local induction ('just as in (6.15)). The resulting coupled filament equations for 
a counter-rotating pair including dominant linear curvature effects and an 2- 
perturbation with both curvature nonlinearities and non-local induction effects read 

(6.16) I 1 
- II., = (1 - ~ ' 1 ~ ' )  @,,,+ 2 (;[@I' @-9[@] +:$) + ~ ~ ( 4 ~ [ $ ]  + &'[Re $I), 
i 

1 2 -  
- T $ T  = (1 --'I#) $vu+ 2 (;l$l'# -$[$I +d$)  +~'(9~[@] + Ad[Re $11, 

where $ and @ are Hasimoto-type filament functions for the two vortices defined in 
analogy with (6.13). The factors (1 - s21Pp4) multiplying the dominant linear curvature 
terms are symmetry breaking arclength corrections, which arise for solutions that have 
infinite support or that are periodic in cr. Otherwise, (6.16) is equivalent to the 
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linearized system from (6.1) for r = - 1 and with the weak cubic curvature 
nonlinearities and the arclength corrections supplemented. 

It is extremely important to realize precisely the regime of perturbation scales for the 
vortex filament centrelines in which the equations in (6.16) are valid and to contrast 
them with the regime considered in this paper. We reiterate that (6.16) is valid for 

displacements of the vortices from their unperturbed positions that 
are small compared to the unperturbed separation distance d’ and 
for 

characteristic perturbation wavelength of the same order as d’. 

As a consequence of the first statement, the mutual induction due to the vortices’ outer 
potential flow fields appears in a linearized fashion through the terms multiplied by 2/b 
in (6.16). As a consequence of the second, long-wave perturbations with wavelengths 
large compared to the filament separation are formally inaccessible in this theory. 

This theory of Klein & Majda (1993) is able to explain the nonlinear generation of 
small scales and local breakdown of vortices through the formation of kinks and 
hairpin structures. These phenomena arise from the interaction of the curvature 
nonlinearities with the non-local induction terms at the first order in 2 as has been 
shown in other contexts also by Klein & Majda (1991b) and Klein et al. (1992). 
However, the linear stability results discussed above raise an important question 
regarding the nonlinear effects that should become important when the long-wave 
unstable modes grow to sufficiently large amplitudes. By construction, the theory is 
designed to describe geometrical perturbations with wavelengths comparable to the 
unperturbed filament separation distance d’. These wavelengths correspond to 
wavenumbers of order O(1) under the scalings chosen for (6.16). However, the linear 
analysis predicts instabilities for perturbations with wavenumbers of order O(e), 
corresponding to wavelengths large compared to the unperturbed separation. Now 
consider a perturbation with wavelength of order d’/e that has grown to produce order 
one curvature, i.e. [$I = O(1). This perturbation will be associated with displacements 
comparable to d‘ and larger, so that the linearization ( 2 / d )  $ in (6. 16)1, say, for the 
potential vortex interaction is no longer acceptable. 

A modified theory is necessary to consistently describe this regime, and the present 
paper approaches this challenge using systematic perturbation analysis in line with the 
earlier work of two of the authors. In this regime the potential vortex interaction 
dominates the curvature nonlinearity and the non-local induction terms and assumes 
the nonlinear structure explained in (1.4) or (6.11). Importantly, in the regime 
considered in this paper, the potential vortex interaction occurs at leading order where 
it then competes directly with the leading linear curvature terms $uu and $uu. This 
theory cannot describe the generation of small scales due to nonlinear-non-local self- 
and mutual-induction, but it is suited to predict the nonlinear mutual attraction and 
tendency toward collapse of trailing vortices behind an aircraft as observed 
experimentally (see Crow 1970, figure 1). 

7. Concluding remarks 
It is interesting to study the properties of the general asymptotic filament equations 

from (1.2) in situations with more than two vortex filaments which arise naturally in 
models for trailing wakes, etc. Another interesting direction is to develop similar 
simplified asymptotic approximations for other physical equations with evolving 
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nearly parallel filamentary structures as occurs in magneto-hydrodynamics, high 
temperature superconductivity, superfluids, etc. Applications and generalization in 
both of these directions are currently being developed by the authors and will be 
reported elsewhere. The general equations from (1.2) are also appealing for a simplified 
statistical theory of nearly parallel vortex filaments which is intermediate between two- 
and three-dimensional statistical theories for vortices (Chorin 1988, 1994). 

As regards the vortex filament pair, it would be very interesting to develop rigorous 
mathematical theorems which necessarily prove that finite-time collapse must occur for 
negative circulation ratios and cannot occur for positive circulation ratios for 
appropriate initial data. It is even possible that the equations in (4.2) are a completely 
integrable Hamiltonian system at least for the special circulation ratio, r = 1 (see $4.2) 
and this possibility merits further investigation. 
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Appendix. Derivation including the first order in e2 

We consider N nearly parallel slender vortex filaments as discussed in $2. Here we 
carry out the Biot-Savart-integrals for the foreign-induced velocity of one filament 
owing to the vorticities of the others. We include the effects of non-locality for 
completeness, which have been neglected as higher-order terms throughout the main 
text. 

We begin with the equations of motion (2.5), 

which one obtains via a matched asymptotic analysis (see Callegari & Ting 1978; Klein 
& Majda 1991 a ;  Klein & Knio 1995). We have quoted in $2, equations (2.5) and (2.6) 
the explicit formulae for the self-induction terms (In 1/6+ Ci) ~b~ + Q: for slender 
vortices with perturbed straight-line geometries as in (2.3) from Klein & Majda 
(1991 a). Here we give a detailed derivation of the foreign-induced velocities Q,;," 
including the first order in 2. 

The matched asymptotic analysis for the velocity field of a slender vortex involves 
separate representations of the velocity distribution in the vortical core of the filament 
and the outer induced irrotational field. In the matching procedure, the small-distance 
representation of the outer field is compared with the large radius representation of the 
core velocity distribution. Here we are interested in the velocity that, say, thejth vortex 
induces at the location of the ith vortex. Since by assumption the vortex cores do not 
overlap, while the separation distance of the vortex centrelines is O(e2) < 1 compared 
to a typical filament radius of curvature, we may immediately use the small distance 
representation of the outer field of thejth vortex to obtain the desired induction at the 
location of the ith vortex: 
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s3xj/i 

FIGURE 19. Associated points Xi and Xj,( on neighbouring filaments. 

(see e.g. Ting & Klein 1991). Next we separately provide asymptotic representations of 
all the terms in (A 2) based on the perturbed curve scalings from (2.3). 

First we observe from figure 19 that the two related points Xi and Xjli on the ith and 
jth vortex are located in nearly the same normal plane to the unperturbed tangent 
vector to :  

where (A 4) 
The scaled axial displacement x ; /~ ,  which is graphically explained in figure 19, will be 
expressed in terms of the perturbation functions Xi2),  Xj2) and their derivatives below. 
With these preliminary considerations we can now expand all the terms needed in 
(A 2). 

s. 31% . = s. a + E3Xt 31%' . 

The distance rjli = IXi - Xjlil 
Using the curve representations in (2.3) we have 

Using next (A 4) we may write 

where we have introduced the abbreviations 

and 

and where it is to be understood that x;li also has an asymptotic expansion 
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It follows from (A 6) and from the fact that Xj")- to  = 0 by assumption (see remark 
below (2.4)) that 

(A 10) 
a 1Xi-qli12 = r;li = e4d,2+s6 ( ~ ~ ~ i ) 2 + 2 ~ ~ l i d e . - I $ " ) ~ ' ] + o ( B " ) ,  an 

where d, = d,/Id,l. At leading order (A 10) reads 

r .  31% . = ~ ~ 1 X ~ ~ ) - X 3 ( ; ~ 1 + O ( e ~ ) .  

The circumferential unit vector Ojli 
The general formula for Ojli is 

where tili is the local unit tangent to 2'; in Xjl i .  We have 

Inserting the curve representation from (2.3) we find 

where cr = S / E .  Using the expansion of the distance vector from (A 6) in (A 13) we 
obtain 

(A 16) 

(A 17) 

From the definition of the distance vector Xi - Xjli we know that it has to be normal 
to the local tangent tili at Xjli .  We use this orthogonality to express the axial 
displacement 

(A 18) 

1 a 
ag 3 

Ojli = - to x d, + e- X!2),' x d,- e2to x d, p31i + O(e3) , 
dt? " 

where d,24:li = 

in terms of Xj2) ,E,  Xj2),c.  Thus we require that 

(Xi  - Xjl i )  tj i i  = 0, 

a 
and use the relations (A 6) and 

(A 19) t .  312 , = t 0 +€-X3(2),~+0(€2), aq 
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(A 22) 
“ 1  

where d = -de, 
ldel 

and ‘0’ denotes the tensorial product. The final result for the circumferential unit 
vector tljIi reads, except for errors o(2 )  : 

The binormal term (ri/4n) ( ~ b ) ~ ~ ~  In (1 / r j l i )  
Knowing that 

Kb = t X  K n  = t X  t,, 

where s” denotes an arclength coordinate, and using 

we find 

1 1  1 
t -  = - -x - ( l - t o t ) . X , , ,  

IX,l (IX,l J, = IX,12 

The sinusoidal contribution ( K  cos q10)~/~ 
Noting that 

” 
(A 29) 

(A 30) 

1 
K cos = e, * Kn where e, = - de = d, 

ldel 
Kn = $ 2 L E  uu +o(l) as E + O ,  

We collect the results from (A l ) ,  (A 2), (A 1 l), (A 23), (A 28) and (A 31) and we notice 
that Qjfl, is the finite part of the Biot-Savart integral for q, for which we have presented 
an explicit asymptotic formula in $2, equations (2.6)-(2.8) : 

where ?i,e = ? , + E ~ X ~ ~ ) , ~ / ~ C T .  The first curly bracket denotes the self-action of the ith 
vortex, while the sum indicates all the effects of foreign induction. Obviously, the 
leading contribution to self-induction is the binormal term involving the logarithm 
In (1 /a), while the dominant foreign-induced velocity is given to leading order by 
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If we neglect all but these two leading contributions and introduce the distinguished 
limit 

1 
€l=lnl/S 

from (2.12), then we obtain a curvature-potential vortex interaction system (1.2) that 
has been at the core of this paper. 
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